Research ArticleInfluenza

A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses

See allHide authors and affiliations

Science Translational Medicine  18 Oct 2017:
Vol. 9, Issue 412, eaam5752
DOI: 10.1126/scitranslmed.aam5752

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

An antibody to battle flu B

Although it circulates globally and is prevalent enough to warrant inclusion in the seasonal influenza vaccine, influenza B is far less well studied than its cousin, influenza A, and therapeutics are lacking. Shen et al. have now generated a potent antibody that inhibits diverse strains of influenza B virus. The antibody recognizes the receptor binding site in hemagglutinin, a region critical to viral entry, and was shown to be therapeutically effective in mice and ferrets. This antibody could be widely deployed to treat or prevent influenza B infection around the world.


Influenza B virus causes considerable disease burden worldwide annually, highlighting the limitations of current influenza vaccines and antiviral drugs. In recent years, broadly neutralizing antibodies (bnAbs) against hemagglutinin (HA) have emerged as a new approach for combating influenza. We describe the generation and characterization of a chimeric monoclonal antibody, C12G6, that cross-neutralizes representative viruses spanning the 76 years of influenza B antigenic evolution since 1940, including viruses belonging to the Yamagata, Victoria, and earlier lineages. Notably, C12G6 exhibits broad cross-lineage hemagglutination inhibition activity against influenza B viruses and has higher potency and breadth of neutralization when compared to four previously reported influenza B bnAbs. In vivo, C12G6 confers stronger cross-protection against Yamagata and Victoria lineages of influenza B viruses in mice and ferrets than other bnAbs or the anti-influenza drug oseltamivir and has an additive antiviral effect when administered in combination with oseltamivir. Epitope mapping indicated that C12G6 targets a conserved epitope that overlaps with the receptor binding site in the HA region of influenza B virus, indicating why it neutralizes virus so potently. Mechanistic analyses revealed that C12G6 inhibits influenza B viruses via multiple mechanisms, including preventing viral entry, egress, and HA-mediated membrane fusion and triggering antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity responses. C12G6 is therefore a promising candidate for the development of prophylactics or therapeutics against influenza B infection and may inform the design of a truly universal influenza vaccine.

View Full Text