Research ArticleCancer

Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps

Science Translational Medicine  19 Oct 2016:
Vol. 8, Issue 361, pp. 361ra138
DOI: 10.1126/scitranslmed.aag1711

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Metastasis caught in a NET

Neutrophil extracellular traps, or NETs, are DNA structures that are produced by neutrophils in response to infection and can promote the spread of cancer in the presence of infection. Park et al. discovered that even in the absence of infection, metastatic breast cancer cells can stimulate neutrophils to form NETs, which further support the spread of metastasis. The authors also demonstrated an approach to breaking this vicious cycle using nanoparticles coated with DNase I, an enzyme that breaks down DNA NETs. This treatment was effective in reducing lung metastases in mice, demonstrating the potential of NETs as a therapeutic target.

Abstract

Neutrophils, the most abundant type of leukocytes in blood, can form neutrophil extracellular traps (NETs). These are pathogen-trapping structures generated by expulsion of the neutrophil’s DNA with associated proteolytic enzymes. NETs produced by infection can promote cancer metastasis. We show that metastatic breast cancer cells can induce neutrophils to form metastasis-supporting NETs in the absence of infection. Using intravital imaging, we observed NET-like structures around metastatic 4T1 cancer cells that had reached the lungs of mice. We also found NETs in clinical samples of triple-negative human breast cancer. The formation of NETs stimulated the invasion and migration of breast cancer cells in vitro. Inhibiting NET formation or digesting NETs with deoxyribonuclease I (DNase I) blocked these processes. Treatment with NET-digesting, DNase I–coated nanoparticles markedly reduced lung metastases in mice. Our data suggest that induction of NETs by cancer cells is a previously unidentified metastasis-promoting tumor-host interaction and a potential therapeutic target.

View Full Text

Related Content