Research ArticleGene Therapy

Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1

Science Translational Medicine  27 Jul 2016:
Vol. 8, Issue 349, pp. 349ra99
DOI: 10.1126/scitranslmed.aaf3838

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Skipping the waiting list

The only cure for hereditary tyrosinemia type 1 (HT1)—an inherited metabolic disease—is a liver transplant. However, owing to the shortage of liver donors, Hickey et al. turned to gene therapy as a way to cure HT1. The authors took liver cells from pigs that have HT (through a defect in the gene Fah), transduced them with the correct Fah, and then put the cells back into the same animals. The ex vivo gene therapy approach prevented liver failure and fibrosis and also restored metabolic function, which is deteriorated in HT1 disease. Having demonstrated in large animals the use of materials that are safe for use in people, the technology is now poised to move into patients, to regenerate their own livers and spare them the long wait times on the liver transplant list.

Abstract

We tested the hypothesis that ex vivo hepatocyte gene therapy can correct the metabolic disorder in fumarylacetoacetate hydrolase–deficient (Fah−/−) pigs, a large animal model of hereditary tyrosinemia type 1 (HT1). Recipient Fah−/− pigs underwent partial liver resection and hepatocyte isolation by collagenase digestion. Hepatocytes were transduced with one or both of the lentiviral vectors expressing the therapeutic Fah and the reporter sodium-iodide symporter (Nis) genes under control of the thyroxine-binding globulin promoter. Pigs received autologous transplants of hepatocytes by portal vein infusion. After transplantation, the protective drug 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione (NTBC) was withheld from recipient pigs to provide a selective advantage for expansion of corrected FAH+ cells. Proliferation of transplanted cells, assessed by both immunohistochemistry and noninvasive positron emission tomography imaging of NIS-labeled cells, demonstrated near-complete liver repopulation by gene-corrected cells. Tyrosine and succinylacetone levels improved to within normal range, demonstrating complete correction of tyrosine metabolism. In addition, repopulation of the Fah−/− liver with transplanted cells inhibited the onset of severe fibrosis, a characteristic of nontransplanted Fah−/− pigs. This study demonstrates correction of disease in a pig model of metabolic liver disease by ex vivo gene therapy. To date, ex vivo gene therapy has only been successful in small animal models. We conclude that further exploration of ex vivo hepatocyte genetic correction is warranted for clinical use.

View Full Text