Research ArticleInfectious Disease

Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections

See allHide authors and affiliations

Science Translational Medicine  09 Mar 2016:
Vol. 8, Issue 329, pp. 329ra31
DOI: 10.1126/scitranslmed.aad9922

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Toxic eviction

There are many benefits to a good roommate, but the wrong choice can be toxic. Now, Cohen et al. examine the effects of co-habitation on lung infection. They found that α toxin produced by Staphylococcus aureus can worsen lung co-infection by Gram-negative bacteria by preventing acidification of bacteria-containing phagosomes, increasing proliferation, spread, and lethality. However, early treatment or prophylaxis with a neutralizing antibody to α toxin prevented this effect and promoted S. aureus clearance in a humanized mouse model. If this eviction occurs in humans, this approach may reduce co-infection risk in patients colonized with S. aureus.

Abstract

Broad-spectrum antibiotic use may adversely affect a patient’s beneficial microbiome and fuel cross-species spread of drug resistance. Although alternative pathogen-specific approaches are rationally justified, a major concern for this precision medicine strategy is that co-colonizing or co-infecting opportunistic bacteria may still cause serious disease. In a mixed-pathogen lung infection model, we find that the Staphylococcus aureus virulence factor α toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing effective killing of both S. aureus and Gram-negative bacteria. Prophylaxis or early treatment with a single α toxin neutralizing monoclonal antibody prevented proliferation of co-infecting Gram-negative pathogens and lethality while also promoting S. aureus clearance. These studies suggest that some pathogen-specific, antibody-based approaches may also work to reduce infection risk in patients colonized or co-infected with S. aureus and disparate drug-resistant Gram-negative bacterial opportunists.

View Full Text