Research ArticleCardiology

Pacemaker-induced transient asynchrony suppresses heart failure progression

See allHide authors and affiliations

Science Translational Medicine  23 Dec 2015:
Vol. 7, Issue 319, pp. 319ra207
DOI: 10.1126/scitranslmed.aad2899

You are currently viewing the abstract.

View Full Text

Disruptive technology

Healthy and the majority of failing hearts beat synchronously. However, some hearts contract with poor coordination and if they are weak, this worsens clinical outcomes. Pacemakers used to reset a heart’s rhythm can also change the synchrony of contraction, making it better or worse, and current therapy called resynchronization makes it better. Perhaps counterintuitively, Kirk et al. demonstrate that using a pacemaker to purposely induce dyssynchrony—but only for part of each day—makes the synchronous failing heart better. In their process, pacemaker-induced transient asynchrony (PITA), the heart’s right ventricle is paced to induce a 6-hour period of dyssynchrony each day, followed by atrial pacing to resynchronize the heart for the remaining 18 hours. In dogs with heart failure, PITA halted chamber dilation and negative remodeling of the heart tissue, improved cellular signaling and force generation, and resulted in normal muscle fiber structure and function, similar to healthy controls. PITA may help the majority of patients with heart failure who have synchronous contraction and thus are not treated with standard resynchronization pacemakers.


Uncoordinated contraction from electromechanical delay worsens heart failure pathophysiology and prognosis, but restoring coordination with biventricular pacing, known as cardiac resynchronization therapy (CRT), improves both. However, not every patient qualifies for CRT. We show that heart failure with synchronous contraction is improved by inducing dyssynchrony for 6 hours daily by right ventricular pacing using an intracardiac pacing device, in a process we call pacemaker-induced transient asynchrony (PITA). In dogs with heart failure induced by 6 weeks of atrial tachypacing, PITA (starting on week 3) suppressed progressive cardiac dilation as well as chamber and myocyte dysfunction. PITA enhanced β-adrenergic responsiveness in vivo and normalized it in myocytes. Myofilament calcium response declined in dogs with synchronous heart failure, which was accompanied by sarcomere disarray and generation of myofibers with severely reduced function, and these changes were absent in PITA-treated hearts. The benefits of PITA were not replicated when the same number of right ventricular paced beats was randomly distributed throughout the day, indicating that continuity of dyssynchrony exposure is necessary to trigger the beneficial biological response upon resynchronization. These results suggest that PITA could bring the benefits of CRT to the many heart failure patients with synchronous contraction who are not CRT candidates.

View Full Text