Research ArticleBioengineering

Ultrasound-mediated gastrointestinal drug delivery

See allHide authors and affiliations

Science Translational Medicine  21 Oct 2015:
Vol. 7, Issue 310, pp. 310ra168
DOI: 10.1126/scitranslmed.aaa5937

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Drugs ride the wave across tissue barriers

Macromolecular drugs traveling through the gastrointestinal tract are met by hard-to-breach tissue barriers that limit uptake and, in turn, dilute or prevent the drugs’ effects. Schoellhammer and colleagues repurposed a common technology in the clinic (ultrasound) to temporarily disrupt structural and physiological tissue barriers, allowing drugs to pass through. The initial application of a handheld ultrasonic probe was for rectal delivery of drugs, with a focus on treating a form of inflammatory bowel disease (IBD), called ulcerative colitis (UC). Patients with UC have few efficacious therapies, but drug enemas seem to work the best, as long as the patient isn’t suffering from diarrhea and the drug is absorbed quickly. The authors found that ultrasonic waves drove insulin and mesalamine into pig colonic tissue faster than natural absorption, without any physical or thermal damage to tissue. Ultrasound was also instrumental in encouraging mesalamine into mouse colonic tissues, leading to the resolution of acute colitis. Ultrasound-mediated drug delivery could be used for other drugs, such as hydrocortisone, and even macromolecules, such as insulin, as demonstrated by the authors, thus serving as a simple physical solution to the barrier challenge in gastrointestinal drug delivery.