Research ArticleCancer

Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer

Science Translational Medicine  26 Aug 2015:
Vol. 7, Issue 302, pp. 302ra133
DOI: 10.1126/scitranslmed.aab0021

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Risk of recurrence

Predicting whether a cancer patient will relapse remains a formidable challenge in modern medicine. Fortunately, circulating tumor DNA (ctDNA) present in the blood may give clues on residual disease—cancer cells left behind to seed new tumors even after treatment. Garcia-Murillas et al. developed a personalized ctDNA assay based on digital polymerase chain reaction to track mutations over time in patients with early-stage breast cancer who had received apparently curative treatments, surgery, and chemotherapy. Mutation tracking in serial samples accurately predicted metastatic relapse—in several instances, months before clinical relapse (median of ~8 months). Such unprecedented early prediction could allow for intervention before the reappearance of cancer in high-risk patients. In addition, the authors were able to shed light on the genetic events driving such metastases, by massively parallel sequencing of the ctDNA, which could inform new drug-based therapies on the basis of the patients’ individual mutations.

Abstract

The identification of early-stage breast cancer patients at high risk of relapse would allow tailoring of adjuvant therapy approaches. We assessed whether analysis of circulating tumor DNA (ctDNA) in plasma can be used to monitor for minimal residual disease (MRD) in breast cancer. In a prospective cohort of 55 early breast cancer patients receiving neoadjuvant chemotherapy, detection of ctDNA in plasma after completion of apparently curative treatment—either at a single postsurgical time point or with serial follow-up plasma samples—predicted metastatic relapse with high accuracy [hazard ratio, 25.1 (confidence interval, 4.08 to 130.5; log-rank P < 0.0001) or 12.0 (confidence interval, 3.36 to 43.07; log-rank P < 0.0001), respectively]. Mutation tracking in serial samples increased sensitivity for the prediction of relapse, with a median lead time of 7.9 months over clinical relapse. We further demonstrated that targeted capture sequencing analysis of ctDNA could define the genetic events of MRD, and that MRD sequencing predicted the genetic events of the subsequent metastatic relapse more accurately than sequencing of the primary cancer. Mutation tracking can therefore identify early breast cancer patients at high risk of relapse. Subsequent adjuvant therapeutic interventions could be tailored to the genetic events present in the MRD, a therapeutic approach that could in part combat the challenge posed by intratumor genetic heterogeneity.

View Full Text