Research ArticleCancer

Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

See allHide authors and affiliations

Science Translational Medicine  18 Mar 2015:
Vol. 7, Issue 279, pp. 279ra41
DOI: 10.1126/scitranslmed.aaa4691

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Melanoma’s triple threat

Combination therapy is the favored approach to fight drug-resistant cancer. For BRAF-mutated melanoma, combining a BRAF inhibitor and checkpoint inhibitors was hoped to improve the antitumor response; however, an early clinical trial was stopped because of liver toxicity. Hu-Lieskovan et al. test the addition of MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors to this combination therapy in an effort to potentiate the MAPK inhibition of BRAF inhibitors while concurrently decreasing the toxicity. They show in a mouse model of BRAFV600E-driven melanoma that triple therapy with BRAF and MEK inhibitors together with adoptive cell transfer (ACT) immunotherapy induced complete tumor regression in a manner consistent with immune activation. In addition, replacing ACT with anti-PD1 in the triple therapy had similar results, supporting the testing of MEK and BRAF inhibitions with various immunotherapies in patients with BRAF-mutated melanoma.

Abstract

Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma.

View Full Text