Research ArticleCancer Imaging

Intraoperative brain cancer detection with Raman spectroscopy in humans

See allHide authors and affiliations

Science Translational Medicine  11 Feb 2015:
Vol. 7, Issue 274, pp. 274ra19
DOI: 10.1126/scitranslmed.aaa2384

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Probing for brain tumors

Gliomas are invasive cancers, spreading quietly throughout the brain. They pose a formidable challenge to surgeons who try to remove all cancer cells during resection; leaving any cancer behind can lower the patient’s prospects for survival. Jermyn et al. adapted Raman spectroscopy for the operating room by developing an imaging technique that uses a commercially available, handheld contact fiber optic probe. The probe’s optic cables were connected to a near-infrared laser, for stimulating tissue molecules; in turn, these components were linked to a computer to visualize resulting spectra in real time. When held against human brain tissue, the probe measured the Raman scattering signal, which was separated from background signals and differentiated from “normal” tissues using certain algorithms. The authors tested the probe in 17 patients with grade 2 to 4 gliomas who were undergoing surgery and compared imaging results with 161 biopsy samples. Intraoperative Raman imaging allowed the authors to detect both invasive and dense cancer cells with an accuracy of 92%. By comparison, the surgeon, using standard surgical tools like the bright-field microscope and magnetic resonance imaging, identified cancer with 73% accuracy. Such label-free, portable, intraoperative imaging technologies will be important in improving the efficiency of tumor resections and, in turn, for extending survival times of glioma patients.