Research ArticlePain

Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

Science Translational Medicine  27 Aug 2014:
Vol. 6, Issue 251, pp. 251ra118
DOI: 10.1126/scitranslmed.3009539

You are currently viewing the abstract.

View Full Text

Log in


Abstract

Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2 = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance.

View Full Text