You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson’s disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser1292 occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser1292 autophosphorylation. Mutation of Ser1292 to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser1292 as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser1292 autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser1292 autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.
- Copyright © 2012, American Association for the Advancement of Science