Research ArticlesDyslipidemia

Niacin Lipid Efficacy Is Independent of Both the Niacin Receptor GPR109A and Free Fatty Acid Suppression

Science Translational Medicine  22 Aug 2012:
Vol. 4, Issue 148, pp. 148ra115
DOI: 10.1126/scitranslmed.3003877

You are currently viewing the editor's summary.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Breaking Free of the “FFA Hypothesis”

Free fatty acids (FFAs) appear in the blood plasma after a meal. Niacin—a vitamin that helps to regulate lipid levels in the body—is given to patients to reduce the amount of FFAs. It also works to raise “good” cholesterol [high-density lipoprotein (HDL)] and lower both “bad” cholesterol [low-density lipoprotein (LDL)] and triglycerides. The “FFA hypothesis” suggests that niacin works to exert these beneficial lipid effects by limiting the amount of FFAs available to synthesize triglycerides. Lauring, Taggart, and colleagues now challenge this long-standing theory. In studies in mice and humans, the authors debunk the hypothesis, showing that the effect on HDL, LDL, and triglycerides is not directly linked to FFAs.

To study the lipid-modifying effects of niacin (nicotinic acid), Lauring et al. used a genetic, humanized mouse model lacking the LDL receptor. In these animals, niacin increased HDL cholesterol levels, as expected. Lack of GPR109A in these animals blocked the anti-lipolytic effect of nicotinic acid on FFAs but had no effect on drug-related changes in plasma HDL and LDL cholesterol or triglyceride levels. Treatment of the mice with a GPR109A agonist, MK-1903, also caused an anti-lipolytic effect but did not affect levels of triglyceride or LDL and HDL cholesterol. Together, these in vivo preclinical studies suggest that niacin works to lower FFAs through GPR109A but has an independent mechanism of action on other lipids. The authors addressed the role of GPR109A in humans by testing the effects of MK-1903 and of another synthetic GPR109A agonist in clinical trials. Both agonists affected FFA lipolysis but had only minor effects on HDL cholesterol and triglyceride levels in patients, thus mirroring results seen in animals and showing that niacin works independently of GPR109A to modify dyslipidemia.

The studies by Lauring et al. point to a new, yet-uncovered mechanism of action for niacin’s beneficial effects on lipids in the blood. Despite overturning the FFA hypothesis and potentially redirecting drug development away from GPR109A agonists, niacin could still be useful for treating other diseases in patients, including atherosclerosis and inflammation, where GPR109A plays a major role in cell signaling.