Research ArticleRheumatoid Arthritis

Selective Activation of Adenosine A2A Receptors on Immune Cells by a CD73-Dependent Prodrug Suppresses Joint Inflammation in Experimental Rheumatoid Arthritis

Science Translational Medicine  08 Aug 2012:
Vol. 4, Issue 146, pp. 146ra108
DOI: 10.1126/scitranslmed.3003717

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Adenosine A2A receptor (A2AR) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A2AR agonists (prodrugs) that require the presence of ecto-5′-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5′-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 (19F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A2AR. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A2AR expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A2AR agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation.

View Full Text