Research ArticleMuscular Dystrophy

Transplantation of Genetically Corrected Human iPSC-Derived Progenitors in Mice with Limb-Girdle Muscular Dystrophy

Science Translational Medicine  27 Jun 2012:
Vol. 4, Issue 140, pp. 140ra89
DOI: 10.1126/scitranslmed.3003541

You are currently viewing the editor's summary.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Muscle Progenitors Find Their Way Home

Muscular dystrophies are genetic disorders primarily affecting skeletal muscle that result in greatly impaired mobility and, in severe cases, respiratory and cardiac dysfunction. There is no effective treatment, although several new approaches are entering clinical testing including cell therapy. Cell therapy aims to replace lost muscle fibers by transplanting healthy donor muscle progenitor cells or cells from dystrophic patients that have been genetically corrected in vitro. Mesoangioblasts are progenitor cells from blood vessel walls that have shown potential as a cell therapy in animal models of muscular dystrophy. In a new study, Tedesco et al. explore whether genetically corrected mesoangioblasts from patients with limb-girdle muscular dystrophy 2D (LGMD2D) have potential as an autologous cell therapy to treat this disease. The authors quickly found that they could not derive a sufficient number of mesoangioblasts from LGMD2D patients because the muscles of the patients were depleted of these progenitor cells. To overcome this problem, the authors reprogrammed fibroblasts or myoblasts from the LGMD2D patients to obtain human induced pluripotent stem cells (iPSCs) and induced them to differentiate into mesoangioblast-like cells that were then genetically corrected in vitro using a viral vector expressing the defective gene SGCA, which encodes α-sarcoglycan. After intramuscular or intra-arterial injection of these genetically corrected, iPSC-derived mesoangioblasts into mice with LGMD2D (immune-deficient Sgca-null mice), the cells homed to damaged mouse skeletal muscle, engrafted, and formed muscle fibers expressing α-sarcoglycan. Using mouse iPSC-derived mesoangioblasts, the researchers showed that the transplanted engrafted cells imbued muscle with greater strength and enabled the dystrophic mice to run for longer on a treadmill than dystrophic mice that did not receive the cells. This strategy offers the advantage of being able to produce unlimited numbers of genetically corrected progenitor cells, which perhaps could be used in the future as cell therapy for treating LGMD2D and other forms of muscular dystrophy.