Research ArticleCancer

Cell Carriage, Delivery, and Selective Replication of an Oncolytic Virus in Tumor in Patients

Science Translational Medicine  13 Jun 2012:
Vol. 4, Issue 138, pp. 138ra77
DOI: 10.1126/scitranslmed.3003578

You are currently viewing the editor's summary.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Therapeutic Virus Hide-and-Seek

Oncolytic viruses (OVs) selectively kill cancer cells by direct lysis as well as by stimulating an antitumor immune response. However, the lack of a method for widespread delivery of OVs to tumor cells hangs like an enthusiasm-squelching dark cloud over the field. Direct intratumoral injection is an option but limits this therapy to easily accessible tumors. Mouse studies suggest that the intravenous route would be blocked by preexisting neutralizing antibodies to the virus—the fast immune response that prevents recurrent infection would block the virus from getting to the tumor. Adair et al. now show in human patients with colorectal cancer that, after intravenous injection, reovirus can be escorted to the tumor by immune cells, which protect it from neutralizing antibodies in the plasma.

The authors performed a window-of-opportunity clinical trial in 10 colorectal cancer patients scheduled to have surgery to remove liver metastases. Before the planned surgery, the patients were injected with oncolytic reovirus. Replication-competent cytotoxic reovirus was recovered from blood cells, but not from plasma taken from these patients, and reovirus protein was identified preferentially in malignant cells compared with nonmalignant liver tissue from surgical specimens. These data suggest that in contrast to observations in mice, human immune cells may shield reovirus from neutralizing antibodies and deliver the oncolytic reovirus to tumors in patients. Although the mechanism behind the delivery process and the efficacy of the OVs remain to be determined, these potentially cloud-lifting studies support intravenous administration of reovirus for cancer therapy.