Research ArticleGene Therapy

Gene Therapy for Aromatic l-Amino Acid Decarboxylase Deficiency

See allHide authors and affiliations

Science Translational Medicine  16 May 2012:
Vol. 4, Issue 134, pp. 134ra61
DOI: 10.1126/scitranslmed.3003640

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Gene Therapy for AADC Deficiency

Patients with aromatic l-amino acid decarboxylase (AADC) deficiency cannot produce the neurotransmitter dopamine from its precursor l-DOPA in the brain. Dopamine is a crucial molecule required for normal motor function. There are few treatment options for AADC deficiency, and most patients afflicted with this rare disease die in childhood. In a phase 1 clinical trial, Hwu and colleagues use an adeno-associated virus (AAV) type 2 vector to deliver the AADC gene into a brain area called the putamen in four children with AADC deficiency. Although at first the patients exhibited dyskinesias (abnormal muscle movements), these resolved after a few months and the patients showed improved motor function. One patient after 16 months was able to stand, and the other three patients were able to sit upright with support. Several other symptoms improved as well including mood and oculogyric crises. There were a number of translational challenges for this gene therapy clinical trial. For example, the authors had to work out how to deliver the viral vector carrying the therapeutic gene directly into the putamen, and even then only a small part of the putamen became transduced with the AADC gene. Also, because the patients’ brains had not been able to make dopamine, it was not clear how the neurons would respond once dopamine started to be produced. Despite these challenges, this first-in-human gene therapy clinical trial suggests that targeting localized areas in the brain with a therapeutic gene delivered by an AAV vector could help ameliorate the symptoms of AADC deficiency and may also be useful for treating other diseases caused by lack of a crucial enzyme in brain tissue.