Research ArticleParkinson’s Disease

Phosphorylated α-Synuclein in Parkinson’s Disease

Science Translational Medicine  15 Feb 2012:
Vol. 4, Issue 121, pp. 121ra20
DOI: 10.1126/scitranslmed.3002566

You are currently viewing the editor's summary.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Tracking the Course of Neurodegeneration

Parkinson’s disease (PD), a neurodegenerative disorder characterized by loss of motor function, affects millions of people worldwide. Although there are drugs that can replace dopamine and thus compensate for the loss of dopaminergic neurons of the nigrostriatal pathway, there is no treatment that can prevent neuronal degeneration. A big goal has been to discover biomarkers that could be used to distinguish PD from other parkinsonian disorders, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP), and to follow disease progression. To date, one of the most extensively tested markers is α-synuclein, a protein that has been implicated in the pathogenesis of PD. There is a decrease in the concentration of α-synuclein in the cerebrospinal fluid (CSF) of patients with PD compared to healthy individuals. However, α-synuclein does not appear to be useful in terms of differentiating PD from other parkinsonian disorders with overlapping symptoms and does not correlate with PD severity or progression. Now, Wang and colleagues have identified an isoform of α-synuclein, phosphorylated α-synuclein (PS-129), in human CSF that may prove to be a more useful marker of PD than α-synuclein. First, the authors developed a highly sensitive and specific assay to measure PS-129 concentrations as well as total α-synuclein in CSF samples from healthy individuals and from a cohort of patients with PD, MSA, PSP, and Alzheimer’s disease. The authors discovered that the PS-129 concentration in CSF, when combined with the total α-synuclein concentration in CSF, helped to distinguish PD patients from those with MSA and PSP. Additionally, CSF PS-129 concentrations in CSF correlated with disease severity in PD patients. These early results suggest that PS-129 may be useful as a marker to assist in the differential diagnosis of PD and to monitor disease progression. This would be of value for selecting patients for clinical trials to test new PD-modifying therapies as they become available and to monitor disease in response to these treatments. However, before PS-129 can be deployed as a marker for PD, it will need to be validated in independent cohorts of PD patients, especially those with samples collected longitudinally.