Research ArticleHuman Genetics

Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing

Science Translational Medicine  25 Jan 2012:
Vol. 4, Issue 118, pp. 118ra10
DOI: 10.1126/scitranslmed.3003310

You are currently viewing the editor's summary.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Getting to the Genetic Root of Mitochondrial Disease

Next-generation DNA sequencing is being applied with great success in research settings to uncover new disease genes. Despite these successes, it is unclear how useful the technology will be for routine clinical diagnosis given the challenge of interpreting DNA variations in individual patients. In a new study, Calvo and colleagues apply next-generation sequencing to infants with mitochondrial disorders, a large collection of inherited diseases that are notoriously difficult to diagnose because of the multitude of candidate genes and the highly variable nature of the clinical presentation.

First, the authors selected 42 unrelated infants with mitochondrial diseases that were refractory to standard clinical genetic testing. Then, for each child, they sequenced the DNA of the mitochondrial genome, the 100 genes previously linked to mitochondrial disease, and the ~1000 additional genes that are known to participate in mitochondrial biology. Of all the DNA differences present in the patients, the researchers prioritized those that were rare in the general population, predicted to disrupt protein function, and inherited in a recessive fashion. Such variants showed fivefold enrichment in the patients compared to that in healthy control individuals. In 10 patients (24%), firm molecular diagnoses were made in genes previously linked to mitochondrial diseases; 13 patients (31%) had prioritized recessive mutations in genes not previously linked to disease. For two of these genes, the authors were able to show that the mutations caused the mitochondrial disorder. These results suggest that next-generation sequencing may be able to provide a molecular diagnosis for ~25% of currently unsolved cases of infantile mitochondrial disease. An additional 25% of cases could be solved in the coming few years as more genes are formally proven to be linked to mitochondrial disease. The remaining 50% of patients in whom diagnosis was not possible underscores the challenge of interpreting DNA sequence data for clinical diagnosis. Nevertheless, the study by Calvo and colleagues will help to calibrate clinicians’ expectations regarding the diagnostic use of next-generation sequencing.