Research ArticleDrug Delivery

The Fate and Toxicity of Raman-Active Silica-Gold Nanoparticles in Mice

See allHide authors and affiliations

Science Translational Medicine  20 Apr 2011:
Vol. 3, Issue 79, pp. 79ra33
DOI: 10.1126/scitranslmed.3001963

You are currently viewing the abstract.

View Full Text


Raman spectroscopy is an optical imaging method that is based on the Raman effect, the inelastic scattering of a photon when energy is absorbed from light by a surface. Although Raman spectroscopy is widely used for chemical and molecular analysis, its clinical application has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing larger Raman signals through surface-enhanced Raman scattering. Because we are developing these particles for use as targeted molecular imaging agents, we examined the acute toxicity and biodistribution of core polyethylene glycol (PEG)–ylated R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by macrophages in the liver and spleen (that is, the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks after administration. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical, or cardiovascular parameters for 2 weeks. Because we are designing targeted PEG-R-Si-Au-NPs (for example, PEG-R-Si-Au-NPs labeled with an affibody that binds specifically to the epidermal growth factor receptor) to detect colorectal cancer after administration into the bowel lumen, we tested the toxicity of the core nanoparticle after administration per rectum. We observed no significant bowel or systemic toxicity, and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs and their toxicity when carrying the targeting moiety, the results presented here support the idea that PEG-R-Si-Au-NPs can be safely used in living subjects, especially when administered rectally.


  • Citation: A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, S. S. Gambhir, The Fate and Toxicity of Raman-Active Silica-Gold Nanoparticles in Mice. Sci. Transl. Med. 3, 79ra33 (2011).

View Full Text