Research ArticleDiabetes

A Bihormonal Closed-Loop Artificial Pancreas for Type 1 Diabetes

Science Translational Medicine  14 Apr 2010:
Vol. 2, Issue 27, pp. 27ra27
DOI: 10.1126/scitranslmed.3000619

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Automated control of blood glucose (BG) concentration is a long-sought goal for type 1 diabetes therapy. We have developed a closed-loop control system that uses frequent measurements of BG concentration along with subcutaneous delivery of both the fast-acting insulin analog lispro and glucagon (to imitate normal physiology) as directed by a computer algorithm. The algorithm responded only to BG concentrations and incorporated a pharmacokinetic model for lispro. Eleven subjects with type 1 diabetes and no endogenous insulin secretion were studied in 27-hour experiments, which included three carbohydrate-rich meals. In six subjects, the closed-loop system achieved a mean BG concentration of 140 mg/dl, which is below the mean BG concentration target of ≤154 mg/dl recommended by the American Diabetes Association. There were no instances of treatment-requiring hypoglycemia. Five other subjects exhibited hypoglycemia that required treatment; however, these individuals had slower lispro absorption kinetics than the six subjects that did not become hypoglycemic. The time-to-peak plasma lispro concentrations of subjects that exhibited hypoglycemia ranged from 71 to 191 min (mean, 117 ± 48 min) versus 56 to 72 min (mean, 64 ± 6 min) in the group that did not become hypoglycemic (aggregate mean of 84 min versus 31 min longer than the algorithm’s assumption of 33 min, P = 0.07). In an additional set of experiments, adjustment of the algorithm’s pharmacokinetic parameters (time-to-peak plasma lispro concentration set to 65 min) prevented hypoglycemia in both groups while achieving an aggregate mean BG concentration of 164 mg/dl. These results demonstrate the feasibility of safe BG control by a bihormonal artificial endocrine pancreas.

Footnotes

  • * These authors contributed equally to this work.

View Full Text

Related Content