Research ArticleInfectious Disease

Estimating cholera incidence with cross-sectional serology

See allHide authors and affiliations

Science Translational Medicine  20 Feb 2019:
Vol. 11, Issue 480, eaau6242
DOI: 10.1126/scitranslmed.aau6242

Estimating the true prevalence of cholera

Successful development of anti-cholera measures requires accurate estimates of infection incidence. Reporting of cholera cases, however, typically relies on clinical assessment at the time of patient presentation and can be problematized by lack of access to health care and variable, nonspecific symptomatology. Combining a small number of serological markers with machine learning methods, Azman et al. were able to accurately detect individuals who had had cholera infections within the previous year. Simulated serosurveys showed that this simple antibody-based approach could potentially be used as an alternative method to estimate cholera incidence in a population.

Abstract

The development of new approaches to cholera control relies on an accurate understanding of cholera epidemiology. However, most information on cholera incidence lacks laboratory confirmation and instead relies on surveillance systems reporting medically attended acute watery diarrhea. If recent infections could be identified using serological markers, cross-sectional serosurveys would offer an alternative approach to measuring incidence. Here, we used 1569 serologic samples from a cohort of cholera cases and their uninfected contacts in Bangladesh to train machine learning models to identify recent Vibrio cholerae O1 infections. We found that an individual’s antibody profile contains information on the timing of V. cholerae O1 infections in the previous year. Our models using six serological markers accurately identified individuals in the Bangladesh cohort infected within the last year [cross-validated area under the curve (AUC), 93.4%; 95% confidence interval (CI), 92.1 to 94.7%], with a marginal performance decrease using models based on two markers (cross-validated AUC, 91.0%; 95% CI, 89.2 to 92.7%). We validated the performance of the two-marker model on data from a cohort of North American volunteers challenged with V. cholerae O1 (AUC range, 88.4 to 98.4%). In simulated serosurveys, our models accurately estimated annual incidence in both endemic and epidemic settings, even with sample sizes as small as 500 and annual incidence as low as two infections per 1000 individuals. Cross-sectional serosurveys may be a viable approach to estimating cholera incidence.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text