Research ArticleStroke

Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke

See allHide authors and affiliations

Science Translational Medicine  14 Mar 2018:
Vol. 10, Issue 432, eaao1313
DOI: 10.1126/scitranslmed.aao1313

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

An alarmin(g) consequence of stroke

Patients surviving a stroke are at an increased risk for subsequent cardiovascular events. Preclinical models have shown accelerated atherosclerosis after stroke; however, the mechanisms underlying this enhanced plaque formation and inflammation in arteries have not been investigated. Now, Roth et al. have discovered that stroke-induced alarmin high-mobility group box 1 (HMGB1) release and sympathetic stress response activation exert a synergistic effect, resulting in exacerbation of atherosclerotic plaques in mice. The authors suggest that interfering with these processes after stroke might reduce the risk of secondary cardiovascular events.


Stroke induces a multiphasic systemic immune response, but the consequences of this response on atherosclerosis—a major source of recurrent vascular events—have not been thoroughly investigated. We show that stroke exacerbates atheroprogression via alarmin-mediated propagation of vascular inflammation. The prototypic brain-released alarmin high-mobility group box 1 protein induced monocyte and endothelial activation via the receptor for advanced glycation end products (RAGE)–signaling cascade and increased plaque load and vulnerability. Recruitment of activated monocytes via the CC-chemokine ligand 2–CC-chemokine receptor type 2 pathway was critical in stroke-induced vascular inflammation. Neutralization of circulating alarmins or knockdown of RAGE attenuated atheroprogression. Blockage of β3-adrenoreceptors attenuated the egress of myeloid monocytes after stroke, whereas neutralization of circulating alarmins was required to reduce systemic monocyte activation and aortic invasion. Our findings identify a synergistic effect of the sympathetic stress response and alarmin-driven inflammation via RAGE as a critical mechanism of exacerbated atheroprogression after stroke.

View Full Text