Research ArticleCancer

Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett’s esophagus

See allHide authors and affiliations

Science Translational Medicine  17 Jan 2018:
Vol. 10, Issue 424, eaao5848
DOI: 10.1126/scitranslmed.aao5848

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A test that goes down easy

Barrett’s esophagus is a premalignant condition of the distal esophagus that increases the risk of esophageal cancer. Unfortunately, screening for Barrett’s esophagus currently requires endoscopy, an invasive and expensive procedure, and thus, it is not routinely performed. Moinova et al. have now demonstrated a simplified approach to screening by identifying a pair of DNA methylation markers that correlate with the presence of Barrett’s esophagus. The authors also invented a swallowable balloon-based device that can capture DNA samples for methylation analysis and found that it is well tolerated in patients and provides >90% sensitivity and specificity compared to endoscopy, suggesting its potential as a screening method.

Abstract

We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE) based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma. Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve of 0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 min. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE.

View Full Text